Power loom

A power loom is a mechanised loom powered by a line shaft. The first power loom was designed in 1784 by Edmund Cartwright and first built in 1785. It was refined over the next 47 years until a design by Kenworthy and Bullough, made the operation completely automatic. This was known as the Lancashire Loom.

By 1850 there were 260,000 in operation in England. Fifty years later came the Northrop Loom that would replenish the shuttle when it was empty and this replaced the Lancashire loom.

Contents

Shuttle looms

The major components of the loom are the warp beam, heddles, harnesses, shuttle, reed and takeup roll. In the loom, yarn processing includes shedding, picking, battening and taking-up operations.

With each weaving operation, the newly constructed fabric must be wound on a cloth beam. This process is called taking up. At the same time, the warp yarns must be let off or released from the warp beams. To become fully automatic, a loom needs a filling stop motion which will brake the loom, if the weft thread breaks.

History

Rev Edmund Cartwright's invention of the power loom, and his modifications to the loom he patented in 1785 was described in his own words.[1] It was to be forty years before his ideas were modified into a reliable automatic loom. Cartwright was not the first man to design an automatic loom, this had been done in 1678 by M. de Gennes in Paris, and again by Vaucanson in 1745, but these never developed and were forgotten. Those designs preceded John Kay's invention of the flying shuttle and they passed the shuttle through the shed using levers.

It was not a commercially successful machine. His ideas were licensed first by Grimshaw, of Manchester who built a small steam-powered weaving factory in Manchester in 1790. The looms had to be stopped to dress the warp, but the factory burnt down before anything could be learnt.

Series of initial inventors

A series of inventors incrementally improved all aspects of the three principle processes and the ancillary processes.

Further useful improvements

There now appear a series of useful improvements that are contained in patents for useless devices

At this point the loom has become fully automatic. The Cartwight loom weaver could work one loom at 120-130 picks per minute- with a Kenworthy and Bullough's Lancashire Loom, a weaver can run up to six looms working at 220-260 picks per minute- thus giving 12 times more through put.

Looms and the Manchester context

The development of the power loom in and around Manchester was not a coincidence. Manchester has been a centre for Fustians by 1620 and acted as a hub for other Lancashire towns, so developing a communication network with them. It was an established point of export using the meandering River Mersey, and by 1800 it had a thriving canal network, with links to the Ashton Canal, Rochdale Canal the Peak Forest Canal and Manchester Bolton & Bury Canal. The fustian trade gave the towns a skilled workforce that was used to the complicated Dutch looms, and was perhaps accustomed to industrial discipline. While Manchester became a spinning town, the towns around were weaving towns producing cloth by the putting out system. The business was dominated by a few families who had the capital needed for the investment in new mills, and buy hundreds of looms. The mills were built along the new canals so immediately had access to their markets. Spinning developed first, and until 1830 the handloom was still more important economically than the power loom when the roles reversed.[4] Because of the economic growth of Manchester, a new industry of precision machine tool engineering was born and here were the skills needed to build the precision mechanisms of a loom.

Adoption

Number of Looms in UK[5]
Year 1803 1820 1829 1833 1857
Looms 2400 14650 55500 100000 250000

In 1881 James Henry Northrop emigrated to the USA from Keighley, Yorkshire, England he worked for the Draper Corporation of Hopedale, Massachusetts. His inventions leading to an automatic "weft replenishment" loom revolutionised the weaving industry. Some 700,000 "Northrop" automatic looms were sold worldwide.

Draper's strategy was to standardise on a couple of models which it mass produced. The lighter E-model of 1909 was joined in the 1930 by the heavier X-model. Continuous fibre machines, say for rayon, which was more break-prone, needed a specialist loom. This was provided by the purchase of the Stafford Loom Co. in 1932, and using their patents a third loom the XD, was added to the range. Because of their mass production techniques they were reluctant and slow to retool for new technologies such as shuttleless looms.[6]

Decline and reinvention

Originally, power looms used a shuttle to throw the weft across, but in 1927 the faster and more efficient shuttleless loom came into use. Sulzer Brothers, a Swiss company had the exclusive rights to manufacture shuttleless looms in 1942, and licensed the American production to Warner & Swasey. Draper licensed the slower rapier loom. Today, advances in technology have produced a variety of looms designed to maximise production for specific types of material. The most common of these are Sulzer shuttleless weaving machines, rapier looms, air-jet looms and water-jet looms.[7]

Social and economic implications

The power loom reduced demand for skilled handweavers, initially causing reduced wages and unemployment. Protests followed its introduction. For example, in 1816 two thousand rioting Calton weavers tried to destroy power loom mills and stoned the workers.[8] In the longer term, by making cloth more affordable the power loom increased demand and stimulated exports, causing a growth in industrial employment, albeit low-paid.[9] The power loom also opened up opportunities for women mill workers.[10] A darker side of the power loom's impact was the growth of employment of children in power loom mills.[11]

See also

References

  1. ^ Marsden 1895, p. 64
  2. ^ Marsden 1895, pp. 70,71
  3. ^ Marsden 1895, pp. 88–95
  4. ^ Miller & Wild 2007, p. 10
  5. ^ Hills 1993, p. 117
  6. ^ Mass 1990
  7. ^ Collier 1970, p. 111
  8. ^ Anna Clark (1997), The struggle for the breeches: gender and the making of the British working class, University of California Press, p. 32ff, ISBN 0520208838 
  9. ^ Geoffrey Timmins (1993), The last shift: the decline of handloom weaving in nineteenth-century Lancashire, Manchester University Press ND, p. 19ff, ISBN 0719037255 
  10. ^ Gail Fowler Mohanty (2006), Labor and laborers of the loom: mechanization and handloom weavers, 1780-1840, CRC Press, p. 114ff, ISBN 0415979021 
  11. ^ Neil J. Smelser (2006), Social Change in the Industrial Revolution: An Application of Theory to the British Cotton Industry, Taylor & Francis, pp. 208–209, ISBN 0415381371 

Bibliography